SIM PROJECT PRELIMINARY INSTRUMENT SYSTEM REQUIREMENTS REVIEW (PISRR)

Project System 17-18 March, 1998

Richard L. Stoller Project System Engineer

- \geq
- S

- Project system overview
 - Requirements flowdown tree
 - Project systems
 - Conceptual design configuration
 - Approach to flight requirements allocations
 - Point design mass and power estimates
- Plan for Technology Readiness Verification (TRV) tracing
 - Testbeds
 - Tracing requirements to testbeds
 - Technology Readiness Verification (TRV) matrix for key project system requirements
- Conclusion

SIM PROJECT DOCUMENT TREE

 \geq

5

Space Interferometry Mission

FUNCTIONAL OVERVIEW REQUIREMENTS FLOWDOWN TREE

SIM PROJECT SYSTEMS INSTRUMENT SPACECRAFT MISSION SYSTEM Space Interferometry Mission

- SIM Science (SI)
 - Terrestrial Planet Finder (TPF)

Accepts requirements from level 1

- Project Policies (PP)
- Synthesizes & derives SIM project requirements at level 2
- Allocates requirements to systems at level 3
 - Instrument
 - Spacecraft
 - Mission (design, operations, launch vehicle)

 \geq

• Level 1

Starlight measurement accuracy shall be . . .

• Level 2

The SIM project shall . . .

• Level 3

The instrument shall . . .

The spacecraft shall . . .

The mission shall . . .

Level 4

The starlight subsystem shall . . .

• Level 5

... unit shall ...

S

APPROACH TO FLIGHT REQMTS ALLOCATIONS

- Maximize separation of instrument & spacecraft (engineering) functions
 - Keep interfaces as simple as possible
 - Goal is to use available engineering subsystems (possibly complete spacecraft)
 - Utilize proven new technology where cost, mass & performance improvements can be achieved at acceptable risk.
- Negotiate requirements flow down in reqmts "Pit" meeting
 - Agree with affected engineers
 - Document "on-line"
 - Trace using "DOORS" tracking tool

MASS SUMMARY (CBE)

		VC
		<u>KG</u>
	Instrument Mass	1509
	(including all structure)	
	Spacecraft Mass	
	(engineering subsystems only, no structure)	356 *
	Launch Vehicle Adapter Mass	<u>44</u>
	Total Flight System Mass	1909
	Launch Vehicle capability	
	(Delta III to e.t. orbit)	2700
	Margin (@29%)	791
		701
7	* Earth-trailing orbit baseline	
	Wet Mass	

Space Interferometry Mission

POWER SUMMARY (CBE)

WATTS

Instrument Power 971

Spacecraft Power <u>366*</u>

Total Flight System Power 1337

Solar Panel capability

(depends on attitude relative to sun) 900 - 3800

Margin Battery will augment

solarpanels for certain

orientations

S

Space Interferometry Mission

*- Earth-trailing orbit baseline

- SIM is first of a kind
 - Concepts not fully demonstrated
 - > Space
 - > Observatory
 - > Lab
- Many components developed in Interferometry Technology Program (ITP)
 - Some system functions demonstrated
- SIM system design concepts must be demonstrated prior to phase C/D
 - Set of testbeds being developed
 (augmentation of ITP testbeds, focus on SIM needs)
 - System engineering plan includes mapping of SIM system & subsystem requirements to testbeds
 - > As needed to retire risk

TESTBEDS PURPOSE

- \geq
- S

Space Interferometry

Mission

- System Testbeds will verify flight system concept
 - To retire <u>technological risk</u> associated with flight requirements
 - Includes system performance in most cases
- Testbeds do not verify flight components or flight system performance
 - Standard flight V&V matrix will be used for flight system verification

- TOM: Thermal Optical Mechanical Testbed
 - Validate thermal/optical modeling approach for SIM
 - Use carefully selected subset of SIM instrument components
- 1-D: One-Dimensional Metrology Testbed
 - Demonstrate picometer performance
 - Use complete set of metrology components
- STB-1: SIM Testbed Number One
 - Demonstrate optical pathlength stability below 10nm
 - single-baseline optical interferometer
 - vibration isolation, metrology, and active optical control
 - Apply realistic disturbance sources
- MAM Microarcsecond Metrology Testbed
 - Demonstrate microarcsecond astrometric measurements
 - Same level of precision as SIM
 - Interferometer, metrology system, and artificial star
 - Enclosed in a vibration isolated, thermally stable vacuum tank

S

- RICST: Real-Time Interferometer Control System Testbed
 - Test incremental software deliveries
 - Closed loop test environment
 - Breadboard optomechanical and optoelectronic hardware
- ColPod: Collector Pod Testbed
 - Demonstrate star pointing acquisition
 - Partially demonstrate star (angle) feed forward tracking
 - Single prototype pod
- STB-3: SIM Testbed Number Three
 - Three-baseline interferometer
 - Equivalent complexity to SIM flight instrument
 - Demonstrate nanometer vibration attenuation in air
- IM: Integrated Modeling
 - Set of models that accurately predicts interferometer functions
 - Performance predictions
 - Error budget reallocation, design tradeoffs
 - Modeling capability validated on testbeds
- Met-,Stl-,MechComp:Metrology, Starlight, Mechanical Component Testbeds

SUBSYSTEM AND TESTBED PRESENTATIONS

- Subsystems will show
 - Rqmts (rows) that must be demonstrated by the testbeds (one or more)
 - > TRV matrix reqmts (rows) identified in {braces}
 - > Rows based mostly on flight system error budget
- Testbeds will show
 - For testbed column,
 - > TRV matrix reqmts that must be veified by the testbad (printed directly from TRV matrix)
 - > First steps toward synthesizing the testbed reqmts & design
 - > Resulting top level requirements on testbed with indications where known on performance capability
- Detailed testbed requirements will be presented at individual testbed requirements reviews
- Testbeds also driven by project Technology plan
 - More detailed work in progress

- Preliminary
 - Requirements & numerical values will change
 - > As error budget matures
 - > As elements of design mature
 - Mapping to testbeds will change
 - > As understanding of tech verification needs develops
 - > As testbed capability estimates mature
 - some "T"s / "P"s may interchange or be added/ deleted
 - Typos will be fixed, blanks filled in
- Refinement of TRV matrix will continue

CONCLUDING REMARKS

- SIM new configuration being defined by flowdown of requirements to subsystems and units
- Error budget being worked as part of the flowdown process
- TRV matrix tracks requirements mapping to testbeds
 - Focus of this review
- Testbed requirements will be developed from TRV matrix requirements and technology plan